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Given groups G , N with |G | = |N| <∞, we ask

Are there any regular embeddings θ : G → Hol(N)?

Equivalently

Does a Galois extension with group G admit a Hopf-Galois structure
of type N?

Does there exist a left skew brace with multiplicative group G and
additive group N?

Specifically, we consider the following conjecture:

Conjecture 1

There is no regular embedding θ : G → Hol(N) with G insoluble and N
soluble.
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What we know:

If θ : G → Hol(N) is a regular embedding with G nonabelian simple,
then N ∼= G (NB, 2004).

If θ : G → Hol(N) is a regular embedding with N nilpotent then G is
soluble (NB, 2015).
We want to replace “nilpotent” by “soluble”.

There is no two-sided finite skew brace with insoluble multiplicative
group and soluble additive group (Nasybullov, 2018).

We can have a regular embedding θ : G → Hol(N) with G soluble
and N insoluble.

e.g. G = A4 × C5, N = A5 = A4 C5,

θ(α, β) : σ 7→ ασβ−1.
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Theorem 1 (Tsang & Chao, arXiv, March 2019)

If there is a regular embedding θ : G → Hol(N) with G insoluble, N
soluble, |G | = |N| = n, then

(a) n is divisible by p3 for some prime p;

(b) n cannot be of the form 2r |S | when S is one of the following
nonabelian simple groups:

(i) A5 of order 22 · 3 · 5;
(ii) PSL2(17) of order 24 · 32 · 17;

(iii) Sz(22m+1) of order 42m+1(42m+1 + 1)(22m+1 − 1) (with a mild extra
hypothesis on m).

(c) n > 2000.

Remarks

(a) uses Feit-Thompson, (b) uses the Classification of Finite Simple
Groups (CFSG), and (c) uses a computer search.

The Suzuki groups Sz(22m+1) are the only nonabelian simple groups
whose order is not divisible by 3.
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The Main Result of This Talk

Theorem 2 (NB)

If there is a regular embedding θ : G → Hol(N) with G insoluble, N
soluble, |G | = |N| = n, then

(a) n is divisible by 8 or p4 for some prime p;

(b) n is divisible by one of the following numbers:

(i) 23 · 33 · 134 = 133|PSL3(3)|;
(ii) (q − 1)q4(q + 1) = q3|PSL2(q − 1)|, where q = 2a + 1 is a Fermat

prime, a ≥ 2 (so a = 2c for some c), i.e. q = 5, 17, 257, 65537, ???
(iii) 1

2p(p − 1)(p + 1) = |PSL2(p)|, where p = 2b − 1 is a Mersenne prime,
b ≥ 3 (so b is prime).

Moreover, G contains PSL3(3), resp. PSL2(q − 1), resp. PSL2(p), as
a subquotient.
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Remarks

(a) marginally improves on Theorem 1(a), but does not use
Feit-Thompson or CFSG.

It might be possible to replace p4 by pp+1 (see later).

(b) does use CFSG.

Theorem 2 implies all of Theorem 1 except when n < 2000 is a
multiple of |PSL2(7)| = 168 = 23 · 3 · 7.
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Transitive embeddings

Definition

A transitive embedding is an injective group homomorphism

θ : G ↪→ Hol(N) = N oAut(N) ⊆ Perm(N)

whose image is transitive on N. (View N ⊂ Hol(N) as left translations.)

The stabiliser G1 of eN has index |N| in G , and ∩g∈GgG1g
−1 = {eG}.

Also θ is a regular embedding ⇔ G1 = {eG}.
Starting with the groups G and N, giving a transitive embedding
θ : G → Hol(N) is equivalent to giving two functions

θa : G → Aut(N), θc : G → N, so that

θa is a homomorphism of groups (i.e. θa gives an action of G on N),
θc is a surjective (non-abelian) 1-cocycle for this action:

θc(gh) = θc(g)(g · θc(h)) for all g , h ∈ G

where g · n = θa(g)(n) for g ∈ G , n ∈ N.
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Definition

A G -subgroup of N is a subgroup M such that θa(g)(m) ∈ M for all
g ∈ G, m ∈ M.

Lemma

Let M be a G-subgroup for the transitive embedding θ : G → Hol(N).

(i) the subset

θ−1M := {g ∈ G : θc(g) ∈ M}
= {g ∈ G : g · eN ∈ M}.

is a subgroup of G.

(ii) θ|M : θ−1M → Hol(M) is a transitive embedding.

(iii) θ|M is regular if and only if θ is regular.

(iv) If also M C N, then θ induces a transitive embedding
θ : G → Hol(N/M), where G = G/ ∩g g(θ−1M)g−1.
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Remarks

This gives an isomorphism between the lattice of G-subgroups of N
and a certain sublattice of the subgroups of G.

Likewise for normal G-subgroups.

If M is an arbitrary subgroup of N (i.e., not a G-subgroup), θ−1M is
just a subset of G.

For a G-subgroup M,

M C N 6⇒ θ−1M C G ,

so
θ is regular 6⇒ θ is regular.

Any characteristic subgroup of N is a normal G-subgroup.

A new idea for Conjecture 1 . . . Group Theorist’s Induction.
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Template for Group Theorist’s Induction:

Theorem

Every finite group [has some property]

Proof.

Suppose G doesn’t.
Let H be [some proper subgroup of G ].
Then [. . . ], so H doesn’t either.
Contradiction!
QED!

This works because G is tacitly assumed to be the minimal
counterexample . . .

. . . on some interpretation of “minimal”.

Let’s try to apply this to Conjecture 1.
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Definition

A bad regular embedding is a regular embedding θ : G → Hol(N) with
G insoluble and N soluble.

It is a minimal bad regular embedding if θ−1M is soluble for every
G-subgroup M ( N.

So Conjecture 1 says there are no bad regular embeddings.

Lemma

Let θ : G → Hol(N) be a bad regular embedding. Then there is a
G-subgroup M of N so that

θ|M : θ−1M → Hol(M)

is a minimal bad regular embedding.

Any composition factor of θ−1M occurs as a subquotient of G.
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Now let θ : G → N be a minimal bad regular embedding.

Let M ( N be a maximal normal G -subgroup of N.

Since N is soluble,

N/M ∼= C r
p for some prime p and some r ≥ 1.

So we have a transitive embedding

θ : G → Hol(V )

where

V is the vector space Fr
p;

G = G/ ∩g gHg−1;

H = θ−1M, a soluble subgroup of G .

Since M is maximal, V has no G -subspaces except {0V } and V ,
i.e. V is an irreducible Fp[G ]-module via θa.
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For a soluble group N, let

P(N) = {primes p : N has a normal subgroup of index p}.

Lemma

Let θ : G → Hol(N) be a minimal bad regular embedding. For each
p ∈ P(N) there is a quotient V ∼= Fr

p of N and a quotient G of G for
which θ induces an irreducible bad transitive vectorial embedding

θ : G → Hol(V ).

Moreover, G has the same nonabelian composition factors as G (with the
same multiplicities).

Potential strategy to prove Conjecture 1:

Show there are no irreducible bad transitive vectorial embeddings.
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Unfortunately, irreducible bad transitive vectorial embeddings do exist!

Example

Let G = PSL2(7) = GL3(2), the simple group of order 168, and V = F3
2.

Write elements of Hol(V ) as block matrices in GL4(2). Let

A =


1 1 0 0
0 1 1 1
0 0 1 1

0 0 0 1

 , B =


1 0 0 1
0 1 1 0
0 0 1 0

0 0 0 1

 .

Then A4 = B2 = I 6= A2 and BAB−1 = A3 so 〈A,B〉 is the image of a
regular embedding D4 → Hol(V ).

It is translation-free but not irreduclble.
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Example (continued)

R =


0 0 1 0
1 0 1 0
0 1 0 0

0 0 0 1

 , S =


1 0 0 0
0 0 1 0
0 1 1 0

0 0 0 1

 .

Then R7 = S3 = I , SR = R2S, so 〈R,S〉 is a group of order 21.

AR = R3A2B, AS = S2A2B, BR = RA3B, BS = S2B.

So
〈A,B,R,S〉 ∼= GL3(2)

giving us an irreducible bad transitive vectorial embedding.

To get some information on minimal bad regular embeddings, we
investigate two aspects of translation-free bad transitive vectorial
embeddings: Sylow p-subgroups, and composition factors.
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Sylow p-subgroups

Let θ : G → Hol(Fr
p) be a translation-free bad transitive vectorial

embedding.

Write V = Fr
p, let H be the stabiliser of 0V , and let P be a Sylow

p-subgroup of G .

Then G = PH and P is transitive on V . (In general P ∩ H 6= {0V }.)

So θ restricts to a translation-free transitive embedding P → Hol(V ).
(It is no longer “bad” since P is soluble, and θ cannot be irreducible.)

In particular, |P| is divisible by pr and we have an injection
P ↪→ Aut(V ) = GLr (p).

This is impossible if r = 1 or 2 since then pr does not divide |GLr (p)|.
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Moreover, if r = 3, then one Sylow p-subgroup of GL3(p) is the group of
order p3 consisting of upper triangular unipotent matrices

 1 ∗ ∗
0 1 ∗
0 0 1

 .

So, if we had a translation-free transitive embedding P → Hol(F3
p), it

would be regular and WLOG its image would be generated by the matrices

A =


1 0 1 u1
0 1 0 u2
0 0 1 u3
0 0 0 1

 , B =


1 0 0 v1
0 1 1 v2
0 0 1 v3
0 0 0 1

 , C =


1 1 0 w1

0 1 0 w2

0 0 1 w3

0 0 0 1

 ,

satisfying the relations BA = AB, CA = AC , CB = ABC .
These imply u3 = v3 = 0, 2w3 = 0.
So if p ≥ 3, we have u3 = v3 = w3 = 0 and the P cannot be transitive.
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We conclude

Lemma

If we there is a translation-free bad transitive vectorial embedding
G → Hol(Fr

p) then either r ≥ 4 or p = 2, r = 3.

The previous Example shows the case p = 2, r = 3 can occur with
G = PSL2(7).

Corollary

If θ : G → Hol(N) is a minimal bad regular embedding and p ∈ P(N)
then |G | is divisible by {

p4 if p ≥ 3;

23 if p = 2.

If θ : G → Hol(N) is any bad regular embedding, then |G | is divisible
by either p4 for a prime p ≥ 3, or by 8.

So we have proved Theorem 2(a) without using Feit-Thompson or CFSG.
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Remark

If we had a translation-free transitive embedding

P → Hol(Fr
p)

with P a p-group and r ≤ p, then P would have exponent p and
nilpotency class < p.
For p = 2 and p = 3, we have shown that no such embedding exists. Is
the same true for all p?
If so, we could replace p4 by pp+1 in the previous Corollary.
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Composition Factors

Suppose we have a bad transitive embedding θ : G → Hol(Fr
p), with G

insoluble and H = θ−1{0v} soluble of index pr .

To obtain from this a “bad” action of a normal subgroup or quotient of G ,
we allow our groups to act just as permutions on a set, rather than via the
holomorph of a vector space.

Definition 3

A bad transitive permutation action is in injective group
homomorphism θ : G ↪→ Perm(X ), where G acts transitively on X , G is
insoluble, the stabiliser H of an element of X is soluble, and |X | = pr for
some prime p and some r ≥ 1.

Then H is a soluble subgroup of index pr in the insoluble group G , and
∩ggHg−1 = {eG}.
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Any bad transitive vectorial embedding is an example of a bad transitive
permutation action.

We try to find its nonabelian composition factors (ignoring the cyclic
composition factors).

If J C G then the orbits of J on X are permuted transitively by G/J.

So both J and G/J have permutation actions on sets of p-power size.
These have soluble point stabilisers, and become injective after dividing
out a soluble subgroup . Thus either J or G/J (or both) gives a bad
transitive permutation action.

Repeating, we can break down a bad transitive vectorial embedding of
characteristic p into a sequence of bad transitive permutation actions of
nonabelian simple groups acting on sets of p-power size. This preserves
all the nonabelian composition factors of G .
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If a nonabelian simple group G has a bad transitive permutation action
G → Perm(X ) with |X | = pr , then G has a soluble subgroup of index pr .

Now we use a consequence of CFSG:

Theorem (Guralnick, 1983)

If G is a nonabelian simple group G with a proper subgroup of
prime-power index pr , then one of the following holds.

(a) G = An, H = An−1 with n = pr ;

(b) G = PSLn(q), pr = (qn − 1)/(q − 1) and H is the stabiliser of a
point or a hyperplane in G;

(c) G = PSL2(11) and H = A5 of index 11;

(d) G = M23, H = M22 or G = M11, H = M!0;

(e) G = PSU4(2) ∼= PSp4(3) and H has index 27.
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Corollary

If G is a nonabelian finite simple group with a soluble subgroup H of
prime-power index, then one of the following holds.

(a) G = PSL2(7) ∼= PSL3(2), the simple group of order 168, and H has
index 7 or 8;

(b) G = PSL3(3) and H has index 13;

(c) G = PSL2(2a) where 2a + 1 = p is a Fermat prime, and H has index
p;

(d) G = PSL2(q) where q = 2a − 1 is a Mersenne prime with q > 7, and
H has index q + 1 = 2a.

Case (c) includes the case PSL2(4) ∼= A5 with a subgroup of index 5.
(This group is also isomorphic to PSL2(5).)

We then deduce . . .
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Theorem

Let θ : G → Hol(V ) be a bad transitive vectorial embedding, with
V = Fr

p. Then one of the following holds.

(a) p = 7 and every nonabelian composition factor of G is isomorphic to
PSL2(7) of order 168;

(b) p = 13 and every nonabelian composition factor of G is isomorphic to
PSL3(3);

(c) p = 2a + 1 is a Fermat prime and every nonabelian composition factor
of G is isomorphic to PSL2(2a);

(d) p = 2 and every nonabelian composition factor of G is of the form
PSL2(q) for a Mersenne prime q = 2a − 1 ≥ 7.

Combining this with the Sylow p-subgroup result, we get . . .
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Theorem

Let θ : G → Hol(N) be a minimal regular embedding. Then one of the
following holds.

(a) P(N) = {7} or {2, 7} and every nonabelian composition factor of G
is isomorphic to PSL3(2) ∼= PSL2(7);

(b) P(N) = {13}, every nonabelian composition factor of G is isomorphic
to PSL3(3), and 134 divides |G |;

(c) P(N) = {q} for some Fermat prime q = 2a + 1, every nonabelian
composition factor of G is isomorphic to PSL2(2a), and q4 divides
|G |;

(d) P(N) = {2} and each nonabelian composition factor of G has the
form PSL2(q) for some Mersenne prime q = 2a − 1 ≥ 7.

Theorem 2(b) follows.
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Thank you for listening!
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